ABclonal in Action: Diabetes, Insulin, and Resisting Graft Rejection

Kin Leung

Kin Leung
Apr 12, 2023 12:00:00 PM

ABclonal Technology IconAs a scientist (or at least, a guy who likes science and works for a bioscience-oriented company), I am invested in the power of scientific research in improving the quality of human life across all arenas. It is particularly gratifying when our customers, who are all primarily research scientists, derive direct benefit from ABclonal's products in their published research. In this case, our business development director had a customer recently defend her thesis based on a publication that used several ABclonal catalog antibodies. I enjoyed reading her group's article that may lead to more effective treatment strategies for diabetes patients going forward, so let's get to it.

Dealing With Type 1 Diabetes


Diabetes Blood Sugar CheckDiabetes refers to a group of diseases in which there is too much sugar in the blood, either because of a lack of insulin production, insulin resistance, or some other inability to process blood glucose effectively. Per the American Diabetes Association, Type 1 diabetes can affect humans of every walk of life and at any age, due primarily to the body's inability to produce insulin. Thanks to a Nobel-winning discovery and increasing understanding of the disease over the course of medical history, Type 1 diabetes can be managed through insulin medications, specialized nutrition plans, and proper exercise. 


Besides insulin injections, one treatment strategy being used today is to transplant pancreatic islets into diabetes patients to replace their defective islets. This way, the newly transplanted islets can produce natural insulin and help manage the disease naturally. As with all transplants, however, islet allotransplants can be rejected by the host immune system, and immunosuppressants to reduce rejection can lead to its own set of problems. By finding a way to make transplanted islets more resistant to host rejection without the complications from immunosuppression, patients can have a more permanent solution to diabetes with less need for regular insulin treatments. This is the impetus behind our customer's research as they reported a novel use of a seemingly unrelated cell type to deliver insulin within a mouse model.


A Clever Use For an Unusual Cell Type


I'm sure doctors and other researchers know far more about this than I, so it won't be as unusual for them, but when I think about diabetes, I think about the pancreas and islets, not about some testicular cell. As Washburn et al. outline in their manuscript, the so-called Sertoli cells have been shown to survive long-term in new hosts without the need for immunosuppressive treatments. In normal physiology, Sertoli cells are testicular cells that serve to not only help sperm develop properly, but also have the capacity to regulate immune function. For their experiments, Washburn et al. used the unique features of these Sertoli cells to deliver functional insulin through a lentiviral system. In their study, it was observed that this insulin-producing engineered murine Sertoli cell line could survive long term as allografts in a mouse diabetes model. 


In the manuscript, there were several very promising results that showed the utility of this strategy in future therapeutic development. Initially, the engineered Sertoli cells (termed MSC1) survived complement exposure as was previously reported for this cell type. The MSC1 cells could produce detectable insulin and displayed over 75% survival over a 50-day trial, with very little IgM and IgG infiltration as well as low complement marker staining to suggest a lower immune response to the graft. Conversely, complement inhibitory proteins were markedly increased in the engineered MSC1 cells, suggesting another survival mechanism to maintain the grafts in the new host mice. While there needs to be more study of Sertoli cells to determine the exact mechanisms they might use to modify the immune response to improve survival, this study shows the possibility of using insulin-producing immune-resistant cells as a permanent solution for diabetes patients. 


ABclonal's Contributions


With over 16,000 catalog antibody products and custom services available to generate reagents to unique markers, ABclonal is equipped to deal with myriad experimental approaches, including the study from our customer outlined in this article. In their study, Washburn et al. took advantage of our high-quality antibodies to Complement Factor B, Complement C4A, Complement C3, and Complement C9 to study the behavior of the complement-mediated immune response in their mouse model. Please read their article to enjoy their beautiful immunohistochemistry data using ABclonal antibodies, and contact us at to see how we can help you get published too!


Tags: Antibodies, ABclonal News, ABclonal Technology, Immunology, diabetes, Immune suppression, ABclonal in action, immunomodulation, Insulin, immune regulation

Kin Leung

Kin Leung

Kin Leung is the Scientific Content Marketing Manager at ABclonal. Kin has a background in immunology and cancer biology. He has enjoyed working with many different technologies and living systems, and is always eager to learn more about the natural world. Kin enjoys talking science and sports, including baseball and the Chicago Cubs.